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Various types of digital filters are characterized by their phase spectra. The phase spectrum 
of a symmetric filter can only take on values that are integral multiples of r. The phase 
spectrum of a positive-definite filter is zero for all frequencies. The phase spectrum of a 
minimum-delay filter must have the same value at the negative Nyquist frequency as at the 
positive Nyquist frequency, so that its net phase change over the Nyquist frequency range 
is zero. A positivereal filter in addition to having a zero net phase change over the Nyquist 
frequency range must have a phase spectrum that is less than ?r/2 in magnitude. A reflection 
coefficient theorem is established which states that a filter is minimum-delay if and only if 
its associated reflection coefficients are less than one in magnitude. A positive-definite 
theorem is established which states that a filter is positivedetinite if and only if a Chebyshev- 
related polynomial has no real roots in magnitude less than or equal to one. Numerical 
tests for minimum-delay, positive-definite, and positive-real are given based on these two 
theorems. 

1. POSITIVE-DEFINITE FILTEM 

The term “digital filter” is commonly used to mean a linear time-invariant filter 
in discrete time. Time is represented by the integer n, and signals x, are represented 
by sequences indexed by the integer 12. In this paper we consider only real-valued 
signals, but our results can readily be extended to the complex-valued case. The output 
yn of a digital filter is given as the convolution of the input x, with the filter weights 
c n ; that is, 

Yn= 5 CL&--k ’ 
k=--m 

For stability, a condition onIthe:filter weights such as 

57 en8 < co 
n=--m 

is imposed. The z-transform of the digital filter is defined as the formal power series 

C(z) = jy c,z”. 
n=-co 
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The frequency spectrum of the digital filter can be defined as 

C(ei”) = f c,eiwn. 
n=--m 

The real variable w  is angular frequency1 which is expressed in radians per discrete 
time unit. Because C(@) is periodic with period 2rr, we can consider w  only in the 
so-called Nyquist range --‘TT < w  < rr. Here w  = r is the Nyquist frequency and 
w  = -r is the negative Nyquist frequency. The filter weights are uniquely determined 
from the frequency spectrum by the expression 

1 
c, = _ 2rr f C(eiw) eciwn dw. (1) 
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For real-valued weights (which we are considering in this paper), the real and imaginary 
parts of the frequency spectrum are, respectively, the cosine transform and the sine 
transform of the weights; that is, 

Re C(eiw) = 2 c, cos wn, 
a=--a0 

Im C(eiw) = f c, sin wn. 
12=-m 

For real-valued weights, the frequency spectrum has the properties: (1) its magni- 
tude 1 C(eiW)j, called the magnitude spectrum, is an even function of w, i.e., 1 C(eim)l = 
1 C(e-“O)l, and (2) its argument arg C(eiU), called the phase spectrum O(U) = 
arg C(eio), is an odd function, that is, O(w) = -0(--w). 

If the weights are symmetric, then the sine transform is zero. That is, if c-, = c, , 
then 

m  

C c, sin 692 = 0. 
n=-m 

Such filters are called symmetric$Zters. The frequency spectrum C(eio) of a symmetric 
filter is real-valued, and hence its phase spectrum can only assume values which are 
integral multiples of z-. More specifically, the phase spectrum O(w) of a symmetric 
filter can take on only the values 0, &27r, f47r, f67r in those regions of w  where 
C(eiW) > 0 and -&T, -f3n, f57r,... in those regions of w  where C(eiU) < 0. A zero- 
phase-shiftjilter is defined as a filter for which O(w) = 0. Clearly, a filter is zero-phase 
shift if and only if C(ei”) is realvalued and positive for all w. Symmetric filters have 
real-valued but not necessarily positive frequency functions, so the zero-phase-shift 
filters make up a subclass of the class of all symmetric filters. 

1 Our angular frequency variable w is the negative of the angular frequency variable commonly 
used by engineers. 
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A digital filter with (real-valued) weights c, is called positive-dejinite if for every 
positive integer M and every set of real numbers x,, , x1 ,..., xw the quadratic form 

is positive. A quadratic form such as this one in which the kernel appears as Ck-j 
rather than as cjPlc is called a Toeplitz form. Making use of Eq. (l), the quadratic form 
may be written as 

which is 

Since M and the x0, x1 ,..., xM are completely arbitrary, we see that Q and C(eiW) 
must be positive together. Thus a positive frequency spectrum yields a positive- 
definite filter and conversely a positive-definite filter has a positive frequency spectrum. 
Thus, in order for a filter to be zero-phase-shift it is necessary and sufficient for the 
filter to be positive-definite. Note that we consider any phase that is an integer multiple 
of 27r as effectively being the same as zero phase. In summary, a symmetric filter has a 
real frequency spectrum, whereas a positive-definite filter has a positive frequency 
spectrum. 

2. MINIMUM-DELAY FILTERS 

Symmetric filters are necessarily two-sided, that is, c, can be nonzero for negative 
as well as positive values of n. As we have seen in the foregoing section, symmetric 
filters are characterized by their phase spectra. A symmetric filter is a filter with a 
phase spectrum that can only take on values that are integral multiples of 7r. A sub- 
class of the symmetric filters are the positive-definite filters. A positive-definite filter is 
a filter with a phase spectrum that can only take on values that are integral multiples 
of 2~, which in effect means that the phase spectrum is zero. 

Let us now consider one-sided filters. A one-sided or causal filter is defined as a 
filter with weights a, that vanish for negative n. An important subclass of causal 
stable filters are the minimum-delay filters [l]. A strictly minimum-delay jilter a, is 
defined as a causal stable filter with z-transform 

A(z) = f a,zn 
72=0 

analytic and without zeros on and within the unit circle, i.e., for 1 z ] < 1. 
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As we might expect, a minimum-delay filter may be characterized by its phase 
spectrum. The unit circle j z 1 = 1 in the z-plane is mapped by the function w  = A(z) 
into a curve r in the w-plane. Since the equation for the unit circle is z = eiU, we see 
that the curve I’ is A(eiw), which we recognize as the frequency spectrum. The interior 
of the unit circle maps into the interior of the curve r. Since the z-transform A(z) of a 
minimum-delay filter has no zeros on or inside the unit circle, the curve r never 
touches the origin w  = 0 and its interior does not include the origin. We recall that 
the phase spectrum O(w) is defined as the argument of A(eiw). Thus for a given w, the 
value of O(w) is the angle of the vector from the origin w  = 0 to the point A(eiw) on 
the curve r. If we let w  go from -r to 7r, then z = eiw will trace out the unit circle 
in the z-plane, and the vector A(eiw) traces out the curve I’ in the w-plane. The angle 
of the vector z = & is the frequency w, whereas the angle of the vector A(ei”) z 
1 A(eiU)l exp[i@(w)] is the phase O(w). Since the curve r does not enclose the origin 
w  = 0, the vector A(eiw) cannot make a net rotation about the origin w  = 0. In other 
words, as w  goes from -7r to GT, any positive rotation of A(eiw) must be balanced by 
the same amount of negative rotation. As a result the phase spectrum O(w) must 
return to its initial value. Thus, for a minimum-delay filter we have O(r) = 0(--n). 
However, for a non-minimum-delay filter, the curve r will enclose the origin w  = 0. 
As w  goes from --rr to CT, the vector A(ei”) will make one complete rotation of the 
origin for each zero of A(z) within the unit circle. Hence, a non-minimum-delay 
filter with N zeroes within the unit circle will have a net phase change of 

O(T) - O(--rr) = 27rN. 

We can now characterize a minimum-delay filter by its phase spectrum: A causal 
stable filter is minimum-delay if and only if the net change in phase is zero over the 
Nyquist range, that is, if and only if 

O(Tr) - O(w) = 0. 

For this reason minimum-delay filters are also called minimum-phase filters. 

3. POSITIVE REAL FILTERS 

Another important subclass of causal stable filters are the positive-real filters. A 
positive-real j2ter b, is defined as a causal stable filter with a frequency spectrum 
B(eiU) that has a positive-real part, that is, 

Re B(eiw) > 0 for -97 < w  < 7r. 

For filters with real weights b, , the above condition becomes 

gob, cos wn > 0. 
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Thus a causal stable filter with real weights is positive-real if and only if its cosine 
transform is positive. 

Let us now define a symmetric filter c, by 

co = bo , 

C ,, = cc, = 0.5 b, for n > 0. 

Then we see that 

iobn m cos wn = C c, cos on 
n=-02 

This equation states that 

Re B(&‘) = C(eiw), 

so if one is positive, the other will also be positive. Thus b, is a positive-real filter if 
and only if c, is a positive-definite filter. 

Because Re B(e”“) > 0 for a positive-real filter, it follows that its phase spectrum 

O(W) = tan-l 
Im B(eiU) 
Re B(ei”) 

must be bounded within the range -n/2 < O(w) < 7~/2. That is, the curve I’ which 
represents the mapping w  = B(eiw) lies entirely within the right-half w-plane: 

Re w  = Re B(ei”) > 0. 

Because r does not touch or include the origin w  = 0, we see that the filter b, must be 
minimum-delay. Thus a positive-real filter is necessarily minimum-delay. The converse 
is not true, as a minimum-delay filter may or may not be positive-real. 

We can summarize as follows: 

(1) The phase spectrum of a symmetric filter can take on only values 0, +T, 
&2?i-, f3rr,... . 

(2) The phase spectrum of a positive-definite filter can take on only the values 0, 
&27r, +47r (which in effect is the value 0). 

(3) The phase spectrum of a minimum-delay filter can take on any value as long 
as its value at r is the same as its value at --7~. 

(4) The phase spectrum of a positive-real filter can take on only values in the 
range --v/2 to 7~12, and its value at rr is the same as its value at --IT. 
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4. NUMERICAL TESTS 

In the previous sections we have given some of the characteristics of positive- 
definite filters, minimum-delay filters, and positive-real filters. Let us now deal with 
some numerical procedures for testing these properties. We confine ourselves to 
filters with a finite number of real weights. Such digital filters are called finite-length 
real-valued filters. 

A finite-length filter a,, , a, ,..., aM is minimum-delay provided all the roots of the 
polynomial 

A(z) = a, + a,z + a** + UMZ‘+f 

lie outside the unit circle in the z-plane. As we have seen, the concepts of minimum- 
delay and minimum-phase are identical. Note that the minimum-phase property is a 
frequency-domain concept in that it pertains to the behavior of the phase of the com- 
plex quantity ,4(z) for values of z on the unit circle. However, the equivalent root 
positioning requirement for minimum-delay is more directly associated with the time- 
domain values a,, a, ,..., a,,,, which determine these roots. 

Similarly, the positive-real property is a frequency-domain concept. Its time- 
domain counterpart is less obvious, because the positive-real property bears no 
simple relation to the polynomial or its roots. However, the positive real property of a 
causal filter b, , b, ,..., b, is equivalent to the positive-definite property of the corre- 
sponding symmetric (and thus noncausal) filter c-,~~ ,..., c-~ , c,, , c1 ,..., c,~~ given by 

co = bo > 

c, = c, = 0.5b, for n = 1, 2 ,..., M. 

As we have seen, the positive-definite property of the symmetric filter is related to the 
Toeplitz form with kernel given by the filter weights. 

The checking of the properties of positive-definite, minimum-delay, and positive- 
real can be made in the frequency domain. However, in digital computation we are 
limited to a finite set of spectral frequencies. For example in the use of the fast Fourier 
transform (FFT), we supplement the weights a, , a, ,..., uM by zeros to give a signal 
@J , a, ,..., U,M , 0, o,..., 0 of length N, where N is a power of 2. The FFT program then 
computes the spectral values at the discrete set of frequencies wi = 2rj/N, where 
j = 1,2 ,..., N - 1. Thus one must choose N sufficiently large so that density of the 
discrete frequencies wj is great enough to exhibit all the essential features of the 
frequency spectrum. The choice of N is not an easy problem from a mathematical 
point of view, so in applications one would have to be guided by experience. For 
example, if one wants to compute a cosine transform to check the positive-real 
property, then it is important to chose N large enough so that no negative portion of 
the transform is missed because that portion lies between two adjacent discrete 
frequencies. Similarly, an erroneous phase spectrum can be obtained simply by not 
picking a dense enough set of discrete frequencies. Tn brief, the accuracy of frequency- 
domaine tests depends upon a dense enough distribution of discrete frequencies. 
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More precise ways of checking the properties of minimum-delay, positive-real, and 
positive-definite properties can be formulated in the time-domain. Let us now give an 
effective test of the minimum-delay condition. First, let us make some definitions. Let 

A,(z) = a, + a,2 + fz1z2 + *.* + UMZM 

be a polynomial of degree M with real-valued coefficients. Then the reverse polynomial 
is defined as 

We see that for z # 0 the equality 

AMR(Z) = ZMAM(z-‘) 

holds. From this equation it follows that 

I AMR(4 I = I A,(0 I for Iz/ = 1, 

which gives 

I AMR(eiw)l = / AM(e-iw)I = 1 AM(eiw)l. 

In words, a causal filter and its reverse causal filter have spectra of the same magnitude. 
Now we want to scale the polynomial A,(z) so that its leading coefficient is unity. 

Given the polynomial AM(z) of degree M > 1 with leading coefficient unity, the 
rejection coejicient pM is defined as the coefficient of z”; that is, for the polynomial 
1 + a,z + a2z2 + *** + a,z”, the reflection coefficient is defined as 

The (two-way) transmission coeficient is then defined as 

The polynomial AM-1 of degree M - 1 can then be defined as 

AM-I(Z) = ~&?[AM(z) - PMAM~(z)I. 

We note that the leading coefficient of A,-,(Z) is also unity. Next, we define the 
reflection coefficient pwel as the coefficient of z”-l in AMFl(z). Likewise, the transmis- 
sion coefficient is 7M-1 = 1 - pLP1 . Continuing, we obtain, 

AM-2(z) = Gi%Lw&) - PM-,&-,(z)l. 
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Thus this algorithm allows us to compute the sequences Ak(z), pk , rh for k = M, 
M-l ,..., 2, 1. Finally, we obtain A,(z) = 1. We assume that no reflection coefficient 
has magnitude one, so no transmission coefficient is zero. 

With this background, we give the following theorem: 

REFLECTION COEFFICIENT THEOREM. Let thepolynomiaZ 

A(z) = a, + a,z + a2z2 + ... f a,UzM 

be the z-transform of a finite-length real-valued digital jilter with leading coeficient 
a,, = 1. Define the polynomial A,(z) as the given polynomial A(z), and carry out the 
above process to yield the reflection coeficients pw , pMPl ,..., pz , p1 . The jilter is 
minimum-delay if and only if each reflection coeficient has magnitude less than one. 

First let us prove the necessary statement in the theorem. Making use of an induc- 
tive proof, we assume that Ak(z) is minimum-delay, which means that Ak(z) has no 
zeros in I z I < 1. Because a,, = 1, the coefficient pk of zk in A&) is equal to the 
product of the negative reciprocals of the zeros. Because all the zeros have magnitude 
greater than one, it follows that pk must have magnitude less than one; i.e., 1 pk [ < 1. 
Thus, TV > 0. Let us make use of Rouche’s theorem [2] with the unit circle as the 
curve. We see that the right-hand side of the equation 

A,-,(z) = T,lAk(z) - $pkA,R(z) 

the polynomials Ak(z) and AkR(z) each have the same magnitude on the unit circle. 
Because ] plc 1 < 1 it follows that the term TilAk(z) plays the role of the function 
with the “big” magnitude on the unit circle, whereas ~;‘p~A,~(z) plays the role of the 
function with the small magnitude on the unit circle. Thus by RouchC’s theorem the 
sum of these two functions, namely AkW1(z), has no zeros on the circumference of 
the unit circle, and has as many zeros inside as the “big” function, namely none. That 
is, Akel(z) has no zeros in j z j < 1 and so is minimum-delay. Since, by hypothesis, 
A(z) is minimum-delay, it follows by induction that: (i) Each member of the sequence 
AM(Z) = A(z), AM-I(Z),..., A,W, Ad z is minimum-delay, (ii) each reflection coefficient > 
pM , pMVl ,..., p2 , p1 is less than unity in magnitude, and (iii) each transmission 
coefficient TM , TM-1 ,..., 72 , T1 is positive. Q.E.D. 

Next, let us prove the sufficient statement in the theorem. By hypothesis, each of 
the reflection coefficients p1 , p2 , . . ., p,,,, has magnitude less than one. Hence, it follows, 
as in the necessary part of the proof, that AkPl(z) has the same number of zeros as 
A,(e), where k = 1, 2 ,..., M. Since A,(z) = 1 has no zeros, it follows by mathematical 
induction that A,(z), A,(z),..., AMW1(z), A,(z) = A( z each have no zeros in / z [ < 1, ) 
and thus each is minimum-delay. Q.E.D. 

The Reflection Coefficient Theorem gives an effective numerical algorithm for 
testing whether or not a digital filter is minimum-delay. Briefly, the algorithm tells us 
how to take the filter weights a,, = 1, a, , a, ,..., aM and convert them into reflection 
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coefficients pl, p2, p3 ,..., pM . The theorem states that the filter is minimum-delay 
if and only if ] plc 1 < 1 for k = 1, 2,..., M. It can be shown that this procedure is 
numerically equivalent to the Schur-Cohn test for determining whether a given 
polynomial is free of zeros in the closed unit disc [3]. In the Schur-Cohn test, it is not 
required that a3 = 1. However, the restriction a, = 1 represents only a change of 
scale factor, and does not affect the generality of our theorem. 

Let us now give a test for determining whether a finite-length symmetric filter is 
positive-real. We have the following theorem: 

POSITIVE-DEFINITE THEOREM. A necessary andsuficient condition that the symmetric 
jilter c0 , cl = cV1 , c2 = cm2 ,..., cM = ceM (with q, > 0) be positive-definite is that 

c, + 2c, + 2c, + *** + 2c, > 0 

and thut 

P(u) =plJ +p,u +pzu2 + -** +p,tP 

obtained from 

C(z) = co + c,(z + z-1) + c2(z2 + z-2) + -** + CM(ZM + z-y 

by the substitution u = O.S(z + z-l) has no real zero in the interval - 1 < u < 1. 

The proof of this theorem follows from the following observation. A real value of u 
such that 1 u 1 < 1 corresponds to a value of z such that 1 z 1 = 1, as seen by the 
equation 

U = 0.5(2 + z-l) = 0.5(6+ + e-f”) = ~0s W. 

That is, there is a one-to-one correspondence between each value of u on the real 
interval - 1 < u < 1 and each value of z on the semicircle z = e*“, where 0 < w  < V. 
If the symmetric filter is positive-definite, then its frequency spectrum 

C(eia) = co + cl(ei” + e-iw) + -*- + cM(eiwM + eciwM) 

is positive, which means C(z) has no zero on the unit circle z = e”“, or equivalently 
that P(U) has no real zero u in the interval - 1 < u < 1. In particular, C(1) > 0, 
which says that the sum of the filter coefficients is positive. 

On the other hand, if P(U) has no real zero in the interval - 1 < u < 1, then 
z = eiw is not a zero of C(z). Thus the frequency spectrum C(ezo) does not vanish for 
any real w. Because c,, + 2c, + **a + 2c, = C(1) is positive, it follows that C(ezw) is 
positive for all w. We note that this Positive-Definite Theorem corresponds to a 
theorem of Wold [4] on the autocorrelation of a process of moving averages. 
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The Positive-Definite Theorem can be used to test whether a symmetric filter has 
zero-phase shift. In using the test we note that there is a simple recursive formula 
that can be used to obtain the polynomial P(U) from the weights c, . This is the 
Chebyshev recursion, 

where T,,(U) = I and T,(U) = U. Then the polynomial P(U) is 

P(u) = c, + 2c,T,(u) + 2c,T,(u) + *** + 2cJ&f(u). 

Finally we note that we can test the filter b, , b, , b, ,..., bM for positive-real by 
testing the symmetric filter c, defined by c,, = b, , cl = cl = b,/2, cw2 = cz = bJ2,..., 
c-~ = cM = b,/2 for positive-definite. 
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